IMaGe: Iterative Multilevel Probabilistic Graphical Model for Detection and Segmentation of Multiple Sclerosis Lesions in Brain MRI

نویسندگان

  • Nagesh K. Subbanna
  • Doina Precup
  • Douglas L. Arnold
  • Tal Arbel
چکیده

In this paper, we present IMaGe, a new, iterative two-stage probabilistic graphical model for detection and segmentation of Multiple Sclerosis (MS) lesions. Our model includes two levels of Markov Random Fields (MRFs). At the bottom level, a regular grid voxel-based MRF identifies potential lesion voxels, as well as other tissue classes, using local and neighbourhood intensities and class priors. Contiguous voxels of a particular tissue type are grouped into regions. A higher, non-lattice MRF is then constructed, in which each node corresponds to a region, and edges are defined based on neighbourhood relationships between regions. The goal of this MRF is to evaluate the probability of candidate lesions, based on group intensity, texture and neighbouring regions. The inferred information is then propagated to the voxel-level MRF. This process of iterative inference between the two levels repeats as long as desired. The iterations suppress false positives and refine lesion boundaries. The framework is trained on 660 MRI volumes of MS patients enrolled in clinical trials from 174 different centres, and tested on a separate multi-centre clinical trial data set with 535 MRI volumes. All data consists of T1, T2, PD and FLAIR contrasts. In comparison to other MRF methods, such as, and a traditional MRF, IMaGe is much more sensitive (with slightly better PPV). It outperforms its nearest competitor by around 20% when detecting very small lesions (3-10 voxels). This is a significant result, as such lesions constitute around 40% of the total number of lesions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Automated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier

Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...

متن کامل

P9: Cervical Spinal Cord Extraction in Patients with Multiple Sclerosis Using Magnetic Resonance Imaging for Measuring Cross-Sectional Area

Multiple sclerosis (MS) refers to the lesions that accumulate in the brain and spinal cord. Magnetic resonance imaging (MRI) is the most sensitive and versatile modality used to show changes in the tissues over time. There has been significant interest in evaluating the relationship between the brain atrophy and disease progression rather than the spinal cord atrophy. The cervical spinal cord h...

متن کامل

A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis

Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...

متن کامل

A Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis

Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 1998